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Some Results on Sparse Matrices* 
By Robert K. Brayton, Fred G. Gustavson and Ralph A. Willoughby 

Abstract. A comparison in the context of sparse matrices is made between the Product 
Form of the Inverse PFI (a form of Gauss-Jordan elimination) and the Elimination Form 
of the Inverse EFI (a form of Gaussian elimination). The precise relation of the elements of 
these two forms of the inverse is given in terms of the nontrivial elements of the three matrices 
L, U, U-1 associated with the triangular factorization of the coefficient matrix A; i.e., A = 
L. U, where L is lower triangular and U is unit upper triangular. It is shown that the zero- 
nonzero structure of the PFI always has more nonzeros than the EFI. It is proved that 
Gaussian elimination is a minimal algorithm with respect to preserving sparseness if the 
diagonal elements of the matrix A are nonzero. However, Gaussian elimination is not nec- 
essarily minimal if A has some zero diagonal elements. The same statements hold for the PFI 
as well. A probabilistic study of fill-in and computing times for the PFI and EF sparse ma- 
trix algorithms is presented. This study suggests quantitatively how rapidly sparse matrices 
fill up for increasing densities, and emphasizes the necessity for reordering to minimize fill-in. 

I. Introduction. A sparse matrix is a matrix with very few nonzero elements. 
In many applications, a rough rule seems to be that there are O(N) nonzero entries; 
typically, say 2 to 10 nonzero entries per row. If the dimension N of the matrix is 
not large, then there is no compelling reason to treat sparse matrices differently 
from full matrices. It is when N becomes large and one attempts computations with 
the sparse matrix that it becomes necessary to take advantage of the zeros. The 
reason for this is obvious: there is a storage requirement of the order of N2 and 
arithmetic operations count of the order of N3 for many matrix algorithms using 
the full matrix. On the other hand, by storing only nonzero quantities and using 
logical operations to decide when an arithmetic operation is necessary, the storage 
requirement and arithmetic operations count can be reduced by a factor of N in 
many instances. Of course, this not only becomes a sizable savings of computer 
time, but also dictates whether or not some problems can be attempted. 

Computations with sparse matrices are not new. Iterative techniques for these 
matrices, especially those related to the solution of partial differential equations 
have been extensively developed [1]. Sparse matrix methods for solving linear equa- 
tions by direct methods have been used for a long time in linear programming and 
there is a large body of literature, computational experience, programs, and artfulness, 
which has been built up in this area [2]-[15]. In most linear programming codes, 
the product form of the inverse (PFI) is the method used to solve linear equations 
[16]-[19], although there are exceptions [20]-[21]. Methods for scaling, pivoting for 
accuracy and sparseness, structuring data, and handling input-output have been 
extensively developed [22]-[72]. However, there do not seem to exist rigorous results 
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which compare one method against another, results which state that one method 
is best, or results which give lower bounds for the best method. Some of the results 
in this paper provide answers in these directions. 

Recently, in a number of other areas of applications, increased interest has been 
shown in sparse matrix methods, namely, electrical networks, structural engineering, 
and power distribution systems [73]-[107]. The reason for this interest seems to be 
inspired by the attempt to do larger problems which, in turn, seems to be inspired by 
the availability of faster and larger computers. This interest has generated a number 
of general sparse matrix programs for solving linear equations, which are under 
development, and indeed has given rise to new ideas. The availability of sparse 
matrix codes [108]-{109] has stimulated interest in other application areas and, 
therefore, further increase the desirability of advancing research in this area. 

In this paper we analyze certain direct methods of solving Ax = b, where A is 
a sparse matrix. However, we do not want to imply that the investigation of other 
matrix algorithms in the context of sparsity (e.g., eigenvalue, eigenvector computa- 
tions) is not important. 

In the second section, we compare, in the context of sparsity, two well-known 
direct methods for solving Ax = b, namely, the elimination form of the inverse 
(EFI), a form of Gaussian elimination, and the product form of the inverse (PFI), 
a form of Gauss-Jordan elimination. It is proved that the upper triangular part of 
the PFI is exactly the negative of the inverse of the matrix U involved in Gaussian 
elimination. The lower triangular part is exactly the L of Gaussian elimination. 
The comparison of the two methods, therefore, requires a method of comparing the 
sparseness of U with the sparseness of UW1. This leads to the next section in the paper. 

In the third section we define the concept of the Boolean form of an algorithm. 
For example, for Gaussian elimination, the matrix A is factored into Lo U. By replacing 
arithmetic operations by logical operations in the natural way, the same algorithm, 
given A. (the Boolean matrix representing the zero-nonzero structure of A) will 
produce the Boolean matrices L. and U.. The concept of minimal algorithms in 
the sense of sparsity is discussed, i.e., an algorithm which produces the minimal 
Boolean matrix and, therefore, requires the minimal amount of storage. It is shown 
by example that Gaussian elimination and the Householder method [59] for factoring 
A = QU, Q'Q = I are not minimal algorithms. It is clearly seen in these examples 
how nonminimality produces unnecessary arithmetic operations as well as un- 
necessary storage requirements. It is then proved that Gaussian elimination is a 
minimal algorithm if the diagonal elements of the matrix A are nonzero. It is shown 
that the PFI must produce a Boolean matrix (U-). which is fuller than U. produced 
by Gaussian elimination. In fact, if the diagonal elements of A are nonzero, no 
method of solving linear equations requiring the computation of U1 can require 
less storage than Gaussian elimination. Also, the minimal algorithms for computing 
U and U` when the diagonal elements of A may be zero are given precisely. These 
algorithms combine the Gaussian elimination or the Gauss-Jordan algorithms with 
a test for a property on submatrices of A (called property R). 

In Section IV, a probabilistic study of fill-in is discussed. The results of this 
study verify some of the conclusions of the previous section. They also indicate 
how rapidly the matrices can fill up and, therefore, emphasize quantitatively the 
importance of pivoting for reducing the fill-in. 
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II. A Comparison Between EFI and PFI for Sparse Matrices. The EFI is a 
form of Gaussian elimination where one transforms the matrix A into a unit upper 
triangular matrix U. The PFI is a form of Gauss-Jordan total elimination where 
one transforms A into the identity matrix L In this discussion, we will not include 
pivoting (which introduces row and column permutations), but we will briefly discuss 
(at the end of this section) how the same pivoting strategy can be carried out for 
either scheme. The notation (A)i, will be used for the element of the matrix A in 
the ith row and jth column. 

Certain elementary matrices, which differ from the identity matrix in only one 
column, are the primary tool for both algorithms. Let tk = col (tlk, ... , t.,), ek kth 
column of the n X n identity matrix I, and ' denote the transpose operation. An 
elementary matrix is any matrix of the form 

1 ta 

Tk = tkk = I+ (tk - ek)e~k 

t,11. 1_ 

If tkk 0, then T`1 exists and T`1 = I - t-'(tk- ek)ek. Note that the zero-nonzero 
structure of an elementary matrix is the same as its inverse. 

PEI Algorithm. Elementary matrices Tk for k = 1, * , n are formed with the 
property that 

Tk1(T;- 
' 

TT1A4)ek = ek 

so that T . T-1A = L Thus, 

Tk = I + (tk - ek)eki 

where tk = T` TT1Aek. It is assumed that t4 1 0 for k = 1, *-, n. 
ENl Algorithm. Elementary lower triangular matrices Lk are formed for 

k = 1, , n with the property that 

L-1(Lj11 ... L1 1A)ek = 
b, 

where 

= (L%-, ** L1A)_,k for I < k, 

= 1 for j=k, 

=0 for j>k. 

Thus, Lk = I + (c - ek)e', where 

c= O for j< k, 

- (L-11 * * * L1 A)ik for I > k. 
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The result is that 

LJ1 L14A = U, 

where U is unit upper triangular with 

(U)Hj = (L1 ... L71A)X, for i < j, 

= 1 for i-j, 

=0 for i > j. 

Our aim is to relate the quantities Tk, Lk, and U of the PFI and EFI algorithms. 
With tk as defined in the PFI algorithm, let 

Vk = col (0, . , 0, tkk, . , tnk), 

Wk = col (tlk, , tk- 0,k9 0 9 0), 

Vk = I + (Vk ek)ek, 

Wk = I + Wkek'. 

It is easily shown that 
(a) VkWk = Tk for k = 1,* n, 
(b) Vk Wi = Wj Vk for 1_ j < k ! n. 
THEOREM 1. Vk = Lkfor 1 < k ? n. 
Proof. It is clear that L1 = T, = V1. Assume that, for j < k, Vi = L;. Then 

using (b) we have 

TnIA T-1 A = ( .W . 
W.. )(L_ 

' 
... L 1) A. 

Since W`1 is an elementary unit upper triangular matrix it has the property that 
b, = (W-1b)i for i _ j. Thus, (T-** Tj1A = (L-11 ... Li1A),k for j _ k. 
From the way that Tk, Vk and Lk are formed, it is clear that these are the nontrivial 
elements of Lk and Vk. Thus, by induction Lk = Vk for k = 1, * , n. Q.E.D. 

Let L = L1 *- L. 
LEMMA. L = I + f,-, (vi - ej)ej. I.e. (L)ii = (Lj)jj. 
Proof. Since Li = V, = I + (Vj-e1)e' and e'(vj - ej) = 0 for i < j, then 

n 

L =L, .. *Ln- I + (vi - ei)e'. Q.E.D. 

This lemma states that multiplication of the Lk is trivial and that L is obtained 
by superposition. 

LEMMA. U = W1 Wn. 

Proof. Since T.1 ... T-'A = I = W` ... W-.L. ** L-1A and U 

41V Lj1A, then 

... W1' U = I. Q.E.D. 

Note that here the multiplication of Wk is not trivial. 
LEMMA. U1 = I - _ w I.e. (U1)jj = - (Wj)1j for i < j. 
Proof. By the previous lemma U = W`** W` . Since W`1 = I - wie; and 

etwi = 0 for i 2 j, then 
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n 

U-- W. W I- E wjee. Q.E.D. 
i 1 

As in the first lemma the multiplication of the W,"1 is trivial. 
THEOREM 2. ti = (L + I- U1)ej for j = 1, ..., n. 
Proof. This is just a summation of the results of the three lemmas. Q.E.D. 
In using these algorithms for computing solutions to linear equations where 

the matrix of coefficients is sparse, one stores only the nontrivial data, i.e., not the 
zeros and not the ones occurring along the diagonal. Furthermore, if one adopts 
column-wise storage, then it is more efficient to operate on the matrix column-wise. 
This is because it is more complicated to find, for example, the elements in the same 
row if the data is stored column-wise. 

It is clear that the PFI algorithm can be implemented column-wise (or row-wise). 
For the EFI this is not so obvious. To do this we require a factored form of U1, 
which uses the data of U. Markowitz [20] obtained a factored form for U1 for the 
EFI in terms of the rows of U. Since the Li are obtained column-wise we require 
a form in terms of the columns of U. Let 

Ui = (U - I)e1, Ui = I + uiei. 

Then 
LEMMA. U = U,, U2. 

Proof. Since U, = I + uie' and ecuj = 0 for i ? j, then 

Un*.. U2 = I + E uje= U. Q.E.D. 
i-2 

Note that multiplication of the Uk in reverse order is trivial. 
Thus, for the EFI we have 

U1. U..F i L-*1* L-1A = I, 

the elements requiring storage are the nontrivial elements of L and U, and the data 
can be stored and operated on column-wise. 

Note for comparison that the PFI yields 

K2A . . *. LA = I 

but Wk 0 Uk. 
Since only the nontrivial elements are stored, the zero-nonzero structure of 

the data is important. 
Definition. Let Ma denote the matrix of O's and l's obtained from a matrix M 

by replacing nonzero quantities by 1. 
The comparison between the EFI and PFI in terms of storage is given in 

Theorem 2 and is restated. 
PFI Storage Requirements. (L + I -U-). 
EFI Storage Requirements. (L - I + U)8. 

The storage requirements are, of course, the number of l's in each of the above 
matrices. 

The comparison is, therefore, between the number of nonzero elements in U 
and U'. In general, it is impossible to say that one is sparser than the other because 
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the statement U sparser than U1 can be applied to a matrix V Ua'. For purposes 
of computation it is important to distinguish between two types of zeros obtained 
by an algorithm: 

(a) Zeros which are the result of multiplication and addition by zero. These can 
be detected by logical operations on the zero-nonzero structure of the matrix and, 
therefore, require no floating-point arithmetic operations. They are independent 
of the numerical values of the nonzero elements. 

(b) Zeros which result by exact numerical cancellation given no round-off error. 
These cannot be detected by logical operations and in the presence of round-off 
error are difficult to detect by examining the numerical result. In any case, they 
require floating-point arithmetic operations and are dependent on the numerical 
values of the nonzero elements. 

In the next section, the comparison between the number of zeros of type (a) 
of U and U` is obtained. 

Pivoting strategies are easy to implement, but for the EFI this is not obvious. 
Following the usual methods, we can process the columns of A in any order, and if 
the order is other than the natural one, we simply form a permutation p(k) to indicate 
that at the kth stage we are processing the p(k)th column of A. Second, we can choose 
any pivot position in the p(k)th column corresponding to any row not previously 
chosen. This introduces a second permutation, q(k), which indicates the pivot position 
for the kth stage. Thus, for the PFI with tv(k) = T-11 ... Tr'Ae,(k) we want T-'a = 

e0(k) so a = Tke,(k) and hence, Tk = I + (a - e,(k))eq(k). 
The situation for the EFI is only different in that in transforming the corresponding 

vector a we leave invariant the positions corresponding to previous pivot positions. 
This means that Lk is no longer lower triangular, but the q(k)th column of Lk has 
zeros in chosen pivot rows and otherwise contains the corresponding element of a. 
The elements of a not used in Lk form the nontrivial part of the q(k)th column of U. 
As before, we have Tk = LkWk, where Wk is related to U-', and for j < k, 
LkW, = WELkC 

III. Minimality of Algorithms for Sparse Matrices. The following notation and 
definitions are used in this section. 

(A)i;-the element of A in the ith row and jth column. 
Aj (i > j)-the j X j matrix obtained from A by deleting rows jA for j ? ,u < i, 

i < jA ? n, and columns ,u for j < ,u < n. 
Ai1 (i < j)-the i X i matrix obtained by deleting rows ,u for i < ,u ? n and 

columns t for i ? ,u < j, j < ,u _ n. 
Lii (i < j)-the (j - 1) X (j - 1) matrix obtained from Ai-,,j-, by replacing 

its ith column with the first j - 1 components of Aej. 
Definition 1. A Booleanization of a computational algorithm is obtained by 

replacing each nonzero operand by a 1; multiplication by logical and, addition 
and subtraction by logical or; and division by logical and if the divisor is one, other- 
wise stop. (See below for further discussion.) 

Definition 2. B. C A. denotes the fact that A. has a one wherever B. has a one. 
Definition 3. The output of a Booleanized algorithm af is denoted by Bo, sym- 

bolically A. -4 B'. This is used to distinguish the fact that the output depends on 
the algorithm used. 
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Definition 4. By numerical data A representing A,, we mean that given a Boolean 
matrix A8, then (A.)ii = 0 implies that (A)ij = 0 but not necessarily the converse. 

Definition 5. An algorithm ax is s-minimal if given any Boolean matrix A. and 
integers i, j such that (B')ij = 1 (where A,8 4 Bc), there exists A representing A. 
such that (B)ij 0 0 (where A -4 B). 

Definition 6. An algorithm af is o-minimal if it requires the least number of arith- 
metic operations (counting addition and multiplication equally) of all algorithms 
which compute the same thing (neglecting round-off). 

Definition 7. A matrix M has property R if there exists a rearrangement of the 
rows and columns of M which puts nonzero entries on the diagonal (i.e., the per- 
manent of M, is nonzero). 

The notion of "Booleanizing" a computational algorithm a needs to be discussed 
further. Consider an example. The Crout algorithm performs the factorization 
A = LU, where L and U are computed by the formulae 

h-1 

lik = aik - 1ijAu&k1 i _ k, 
(3.1) /A= 

/ i- 
Uik = aik E liUjh/ tik < k. 

This notion, as applied to the Crout algorithm, is motivated by the logical process 
of deciding when an arithmetic operation is necessary in the processing of a sparse 
matrix. It is clear that the Crout algorithm, when converted, will take a Boolean 
matrix A. and produce Boolean matrices (see Definition 3) L' and UC, provided 
division by zero is not encountered. 

It should be clear that algorithms which compute the same numerical results 
will not, in general, produce the same Boolean output. Obviously an algorithm 
which (a) computes A` by PFI, (b) triangularizes A` to obtain L' and U-', (c) com- 
putes L and U from L' and U` by PFI will (neglecting round-off) produce the 
same matrices L and U as the Crout algorithm, but will generally give different L. 
and U8. Specifically, the Boolean process is not reversible: i.e., although A = LU, 
in general, A,8 # L, D U,, where 0 represents the Booleanization of matrix multiply. 
The matrix A, below is an example. 

F101 -] Fo01 101F 

As = 110\ 1110 = III L8 0 U8. 

_001 L00oo _001L 

Not all algorithms can be Booleanized. In particular, an algorithm which tests 
numerical data and makes a decision based on this test (e.g., Gaussian elimination 
with pivoting) will not qualify. However, we take the attitude that the pivoting can 
be replaced by an initial rearrangement of rows and columns. In general, the 
Booleanized algorithm is restricted to computations on the matrix A., but it is not 
legitimate to rearrange A.. We emphasize in the rest of this paper, that we are given A. 
with the arrangement of rows and columns fixed thereafter. 

The very difficult question of what reordering of the rows and columns for the 
s-minimal algorithm will produce the sparsest output will not be attacked in this 
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paper, although it is felt that some of our results may have some bearing on this 
question. 

A simple consequence of non s-minimality is that if an algorithm a is not s-minimal, 
then there is an i, j location for which computation is performed to compute something 
which is always zero; i.e., we always end up with exact (neglecting round-off) numerical 
cancellation in location i, j. 

Certain well-known algorithms which are thought to be good or best, in some 
sense, are not s-minimal, and therefore, do unnecessary fill-in. The Crout algorithm 
as specified in (3.1) is not s-minimal, but as we will see, a certain modification of 
this algorithm is s-minimal. A counterexample for the Crout algorithm is 

a b c 0 

A= d 0 0 0 A =K 4 
e f g 0 

_h 0 0 i_ 

We compute by the Crout algorithm 

(L)43 = -h-- + _k O. a a b 

whereas (L)43 = 1. In particular, besides having to allocate additional storage, 
there are two unnecessary multiplies and one add required. 

It is obvious that the Gauss-Jordan method is also not s-minimal. Another non 
s-minimal algorithm is the Householder algorithm for factoring a matrix A into 
A = QR, where R is upper triangular and Q'Q = L A counterexample is 

0 a 0 

A = b 0 OIL 

_c 0 d_ 

It turns out that (R)23 0, but following the Householder algorithm as given in [59] 
we find that (R,')23 = 1. 

The Gram-Schmidt and the modified Gram-Schmidt algorithms [110] do not 
fail on this example and it is not known whether these are s-minimal. The Givens 
method [59] does fail, and, therefore, is not s-minimal. 

Let L, and U. denote the minimal sparseness structure for the factorization of AS. 
Thus, (L')i; = 1 if and only if there exists a numerical realization of A. such that 
(L)ii 0 0. 

We will assume in what follows, that A,, has property R for 1 ? i _ n; otherwise, 
the factorization cannot exist. 

THEOREM 3. For i _ j (i < j), (Lm)i; = 1 ((U')i; = 1) if and only if A8i1 has 
property R. 

Proof. The proof depends on the following lemmas. Lemmas 1 and 2 can be 
found in Householder [44]. 

LEMMA 1. For i > j, (L)i = (det Aij)/det Aj1,1_j1. 
LEMMA 2. For i < j, (U)ij (det A1j)/det Aii. 
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LEMMA 3. Let A. be given. Then there exists a matrix A representing A, such 
that for all square submatrices B. of A8 with property R, det B 5 0. where B is the 
corresponding submatrix of A. 

Proof. For each square submatrix B of A, det B is a polynomial of the nonzero 
entries of A. Let these entries be denoted by x = (xl, x2, * , xn), where n is the 
number of nonzero entries in A8. For each B. with property R we have that 

det B = PB,(X) 

is a nonconstant polynomial in x since by property R, det B has at least one non- 
vanishing term. Since nonconstant polynomials vanish on a set of measure zero, 
and since there are only a finite number of square submatrices of A, then the set 

S = U {X; PB,(X) = 0}, 
Bs 

where the union is taken over each submatrix B. of A. with property R, is a set of 
measure zero. Hence, there must exist a point x* such that PB,,(x*) 0 0 for all B., 
B. C A. and B. has property R. The point x* gives us the matrix A* with the re- 
quired property. Q.E.D. 

We suppose that i > j in the remainder of the proof of Theorem 3. The case 
i < j is very similar and will not be given. 

Now suppose A8fj has property R. Then by Lemma 3 there exists a numerical 
representation A* of A. such that det AA * 0 and det All 0 H 0. Hence, by 
Lemma 1, (L *)1i # 0. Thus (Lm)i; = 1. 

Now assume that (Lm)ij = 1. By definition, there must exist a numerical repre- 
sentation of A. such that (L)ji 0 0. This implies that det Ai-,, i1 0 0 also. However, 
if Aii does not have property R, then det Ai; = 0. Therefore, by Lemma 1, we have 
a contradiction and Aii must have property R. Q.E.D. 

Theorem 3 immediately leads us to s-minimal algorithms for the triangularization 
of A into LU. Namely, we take any algorithm a which computes L, U and before 
we attempt to compute (L)ij or (U)+j, we test if A8ii has property R. Note that this 
is not a test on the numerical data, but only a test on A, and as such is an algorithm, 
which has a Boolean counterpart. The testing for property R is the assignment 
problem for which there are known algorithms [111]-[114]. 

THEOREM 4. Any algorithm a + R which computes L, U, and tests for property 
R is s-minimal. 

Proof. In the Booleanized algorithm a + R, we compute the matrices L', U' 
and for each "one" entry, say (L')j; = 1, as it is generated by the Booleanized a 
algorithm, we test if the matrix Asia has property R. If it does not, we change (L')i1 
to zero and proceed. Therefore, (L?+R)ij = 1 only if A8~i has property R. Conversely, 
if A.ij has property R, then (LJ+R)ij = (L')ij = 1. Using Theorem 3, we conclude 
that La+R _ L U?+R = Ua. Q.E.D. 

It turns out that if the diagonal entries of A. are 1, a case often met in practice, 
then it is not necessary to include the test for property R with the Crout algorithm; 
i.e., the Crout algorithm is s-minimal in this case. 

THEOREM 5. Suppose i _ j (i < ]) and (A8),,, = I for 1 ? ,u j - 1 (1 < , 
i- 1). Then A.i has property R if and only if (LQ)i = 1 ((U )i = 1). 

Proof. Suppose A8jj has property R. Using Theorem 3 and the fact that L, 5 LC 
it follows that (L)j, must be one. The proof for U is similar and omitted. 
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Conversely, suppose that (U ), = 1. The proof for L is similar and will be omitted. 
We will show that there exists a numerical representation of A. such that (U),i # 0 
and, therefore, by Theorem 3, A.ij must have property R. 

Consider the Crout formulae 

si = aii- ?li~uj j, 

Uij = (as;- E iu Ijiiq < j 

Case 1. (A.)ij = 1. Then we can perturb the value of ai, so that ui; must be 
nonzero, since the other entries in the formula for uij do not depend on aii. 

Case 2. (AJ)i1 = 0. Choose the largest value of it, say u,, in the formula for uii 
such that (L))i,.* = (U:),,. = 1. There must be such an index; otherwise, (UE)i1 = 0. 
We proceed by induction. Assume that uji 0, but that for 1 , < i if (U)j, = 1, 
then Aa/l, has property R, and if (L'O)i, = 1, then A8fy has property R. By Lemma 3, 
this means we must have a numerical representation for which 4,.* and upsj are 
both nonzero. We note that li4,. and fAd,.s (where u,,. = u,. /l,., ) are independent 
of a,,*,*. Therefore, let a,,*,* become large. (We use the fact that (A8),* 1.) 
We have by assumption 

ui = li.*u,.*i + 2 0. 

But since li,*u, * can be made arbitrarily small, by making a,,*,,* arbitrarily large 
and since z is independent of a, A*, *, it must be that 2 _ 0 and, therefore, li, .mu, i _ 0. 
This is a contradiction and, hence, uij 0 0. By Theorem 3 this implies that A4j has 
property R. Q.E.D. 

COROLLARY. If (A8)ii = 1 for 1 ? i ? n - 1, then the Crout algorithm is s-minimal. 
It is not true in general that if Aik has property R, then (U-1)ik 0 0, as the following 

counterexample shows. Consider 

a b c d 

A = e 0 f Z . 
O g O O 

Li 0 0 iJ 

Then clearly A24 has property R, and we compute (U)24 = dib, but 

U-')2 
d (- ecla (gd/a)(- be1q)' ) = b \ be/a)( - g(f - e/) 

Since U- is full, this example shows that in special cases (U-1)' C Um. In fact, if 
(AJ)23 0, then (U-1)14 0 also, but U is still full. 

However, we can characterize the fill-in of U1 directly in terms of determinants 
of the original matrix A just as we did for the fill-in of L and U. We do not know 
if the following lemma is known. 

LEMMA 4. (U%),k = -det Aik/det Ak-l,k-l, where i < k. 
Proof. From Section II we know the kth column of T21 . * * T`1 A is the non- 

trivial column of Tk. Letting Wk = col (tlk, * **, i 0, ... , 0), we saw that Wk = 
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I + we had the property that the nontrivial column of W`1 was exactly the kth 
column of U-1. Thus, (U1')ik = -ti for i < k. 

On the other hand, 

T - 1 ** * 1 1_ pk-l,k-1 ? 

IB C, 

where B and C are some matrices of the appropriate size. Thus, the first k - 1 compo- 
nents of the kth column of Tk-I,% * 171A is A',1 ,kldk, where 4k col (al,, . , ak- .k). 

Using Cramer's rule, we have that ti, = det Aik/det Aklk1l. Q.E.D. 
Therefore, we have the following theorem. 
THEOREM 6. (U1')ik = 0 if and only if A,ik has property R. 
Since the proof follows directly from the lemma and is similar to the proof of 

Theorem 3, it will be omitted. 
If the diagonal elements of A are nonzero, we have a complete characterization 

of the fill-in of U-1. 
Denote by a* the algorithm A .Bot' L\U - U-1, where U1 is computed from U 

by the formula (3.4) below. 
THEOREM 7. If (A)ij = 1 for 1 i < n, then a*i is s-minimal. 
Proof. For convenience, let vi; denote (U-1),j and V denote U-1. Then we compute 

V from U by 
k-i 

(3.4) Vi= -Uik - VlUk 
/Ai+i 

Suppose that (V'*)ik = 1. We need to show that there exists a numerical representa- 
tion of A, such that vik # 0. Let g* denote the smallest row index of u occurring 
in (3.4) for which (U),*k= (V"*)i,*= 1. There must be at least one such g value 
since (V,*)ik = 1. It may be that ,* = i. In that case, vi,* = 1 in the following. 

We proceed by induction. Assume that for arbitrary I and 1 < j < k, (Ve )1= 1 
implies v11 0. By Theorem 5 there must exist a numerical representation of A. 
such that suk # 0. If for this numerical representation, vi,,* = 0, then using Lemmas 3 
and 4, we can perturb the data so that both vi,* and U*k are nonzero. We note that 
both vi,* and u,* are independent of a,,, for gi > g1*. 

If vi,- 0, then from (3.4) 

UIA*kViIA* + 2e 0 

and we have 2- -uv*kri,,* 5 0. However, by making aA,,, large for gi > 4,u each v 
and u term in 2 must approach zero and since u,*kvi,* remains constant, we have a 
contradiction. Therefore, vik 1 0. Q.E.D. 

THEOREM 8. UEFI C (U-)"FI. 
Proof. From Section II we know that the PFI or Gauss-Jordan algorithm is the 

Boolean equivalent of A 2F L\U ('4 U-1, where GE denotes any form of Gaussian 
elimination. The only difference in these algorithms is the sequence in which opera- 
tions are carried out. This, however, does not affect the Boolean output of the al- 
gorithm. Since from (3.4) we have (UE)ik = 1 implies ((U-1)'*)ik = 1, we conclude 
that ULF' C (U-1)PFI 

COROLLARY. If (A.)jj = 1 for 1 ? i ? n, then the EF1 and PFI algorithms are 
s-minimal for computing L\U and L\U-', respectively. 
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This result can be rephrased, in that if the diagonal elements of A are nonzero, 
then there is no method, known or unknown, of solving linear equations which 
computes L, U` and which requires less storage than Gaussian elimination. 

Theorems 3 and 6 give a partial explanation of the occurrence in the EFL and 
PFI of very small nonzero quantities obtained in computing the forms of the inverse. 
In some instances these are zeros identically, but because of round-off error, appear 
as nonzeros. We see that this can happen if the diagonal elements of A are not all 
nonzero; i.e., this phenomena can occur if we choose some pivot positions cor- 
responding to zero locations of the original matrix A. In some codes, a threshold 
test is applied to every nonzero quantity, and if it is too small in absolute value, it 
is set to zero. Such a threshold test is not so necessary if it is known that the pivot 
choices correspond to nonzero elements of A, since "logical" cancellations cannot 
occur. 

We have thus far been concerned with sparseness only and not the arithmetic 
operations count which might be another quantity to be minimized by an algorithm. 
According to Definition 6 an algorithm is o-minimal if it requires the least number 
of arithmetic operations (counting both addition and multiplication equally) of 
all algorithms which compute the same thing. Clearly, the Crout algorithm is not 
the o-minimal algorithm for computing L\U. The question of o-minimality is not 
answered even in the full matrix case although some results on the algorithm requiring 
the least number of multiplications have been obtained [115]-{116]. For sparse 
matrices, no results are available and we pose the following question: Under what 
conditions is a Crout algorithm locally o-minimal in the sense that the Crout method 
for computing the next element in the factorization requires the minimal number 
of arithmetic operations? Our conjecture is that the Crout algorithm is locally o-min- 
imal if (A.)ii= 1 for 1 < i ? n. This condition can be shown to be necessary by 
counterexample. We will not pursue this question further in this paper. 

IV. A Comparison of EFI and PFI for Randomly Generated Matrices. In Sec- 
tion III we demonstrated that the factored form U determined by the EFI method 
never had more nonzero elements of type (a) than the factored form of U1. This 
result says nothing about how much fuller U` is than U. In fact, if a matrix is tri- 
diagonal, then U` is a full upper triangular matrix while U is co-diagonal; whereas, 
for the matrix 

X 0 X 0 X o 

X X 0 0 0 0 

A = 0 0 X 0 0 0 
X O 0 X OO 

0 X O 0 X O 

00 0 X O X 

U` and U have the same number of nonzero elements. To obtain some idea of the 
fill-in characteristics of these two algorithms, we have performed an experiment on 
a set S of matrices whose elements are generated randomly. 
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A matrix A & S is characterized by two parameters n and p as follows. A has 
order n, and nonzero dominant diagonal elements. The other n2 - n elements of A 
are chosen nonzero with probability p. The numerical value of each nonzero off- 
diagonal element of A is chosen as a random floating point number between -1 
and +1. The set S consists of five groups of eighty matrices each. In each group, 
the order is fixed: n = 100, 200, 300, 400, and 500 for the five groups. Within each 
group, ten matrices of equal density are generated for each of eight increasing values 
of p. The experiment consists of solving Ax = b for each A E S, both by the EFI 
and PFI method, and noting the amount of fill-in and the execution times for the 
factorization and back-substitution. All calculations were carried out on an IBM 
model 360/67 computer. 

The computer programs that we designed for the EFI and PFI method are typical 
of sparse matrix codes and are similar to that described by Tinney and Walker [63]. 

The results of the experiment are displayed in Figure 1. In both graphs we have 
plotted percent of fill-in vs. original percent. There are five sets of data points plotted 
in each graph. For a given set (value of n), we have plotted for each of eight abscissa 
values, the maximum, average and minimum values of fill-in (in percent). It appears 
from the similarity of each of the five graphs, that each graph is described by a single 
function. To see this, let y = f(x) represent one of the five curves. Then, to rough 
approximation, any other curve is obtained as y = f(ox), a- a constant. Closer scrutiny 
reveals that o- is proportional to 1 /n, so that, since the abscissa is proportional to 1 /n2, 
percent of fill-in is independent of n for constant values of n'/n3, where n' is the 
number of nonzeros in the original matrix. 

PRODUCT FORM 

20 - 

18 1 

l , ~~~*5SOOx5OO 
16 - o 400 x4OO 0300x300 

.j. . . *200 x200 
14 -I- x lOOxIQO 

Z 12 - 
-J 

1o 0 t i | 10f ELIMINATION FORM 

6 -- 

4- ~ ~ ~ t40 

- -- I I , I 
.5 1 1.5 2 5 1 2 

ORIGINAL % ORIGINAL % 

Fill in Comparison of PFI and EFI 
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An important result of this experiment is that randomly generated matrices fill 
in very fast. The graphs in Figure 1 reveal a "take off" in fill-in at about 2 nonzero 
elements per column. This sharp rise in fill-in continues in both the EFI and PFI at 
least until the 50 percent fill-in mark is reached. The EFI rate is about one-half the 
PFI rate. This means that the rate of fill-in for U is one-third that for U-'. 

The execution time for factorization of the PFI ranges from 1.5 to 5 times that 
of EFI. For back-substitution, the range is from .7 to 2.5. Since, for full matrices 
the ratio of factorization time is -n3 to 1-n3 or 1.5, we see that the gain is even greater 
for sparse matrices. The higher time ratios occur for the matrices with the larger 
fill-in. Back-substitution time, except for indexing, is proportional to the number of 
nonzero elements in the factorization of A. The explanation for a time ratio less 
than 1 is due to the fact that in the EFI we index from 1 to n twice (Ly = b and 
Ux = y) whereas we index only once in the PFI. This additional indexing shows up for 
very sparse matrices and becomes a nontrivial part of the total time for back-substi- 
tution. 

The experiment points out the importance of a practical reordering scheme. One 
should, before factorization, reorder the rows and columns of A to reduce fill-in. 
At present, there exist no algorithms which give an ordering of rows and columns 
which produces minimum fill-in (or minimum operation count) for either the elimi- 
nation form or the product form. Even if such an algorithm existed, it might not be 
practical because of its complexity. However, some simple procedures do exist, and 
these give remarkable reductions in fill-in [63], [72]. 

One should not conclude that the EFI is twice as good as the PFI. Our experiment 
is unfair in that a reordering algorithm did not precede both the EFI and PFI cases. 
Nevertheless, the results of Sections II and III show that the application of the 
elimination form to the best PFI ordering will result in less fill-in than given by the 
product form. Thus, any ordering that is good for the PFI is also good for the EFI. 
However, no such claim can be made for the PFI. Also, it appears that the best 
strategies for EFI and PFI will differ since the EFI produces a symmetric factorization 
(L and U) and the PFI an unsymmetric one (L and U-'). 
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